Ormar
概述
ormar 包是 Python 的异步 ORM,支持 Postgres、MySQL 和 SQLite。
使用 ormar 的主要好处是:
- 获取可与异步框架(fastapi、starlette 等)一起使用的异步 ORM
- 只需维护一个模型 - 您不必维护 pydantic 和其他 orm 模型(sqlalchemy、peewee、gino 等)
目标是创建一个简单的 ORM,可以直接与基于 pydantic 的数据验证的 fastapi 一起使用(作为请求和响应模型)。
Ormar——除了名字中明显的“ORM”之外——它的名字来源于瑞典语中的ormar,意思是蛇,以及克罗地亚语中的ormar(e),意思是内阁。
对于 python ORM 来说,还有什么比 Snakes Cabinet 更好的名字呢:)
如果你喜欢 ormar,记得给 github 中的存储库加注星标!
我们建立的社区越大,就越容易发现错误并吸引贡献者;)
文档
查看文档了解详细信息。
请注意,为了简洁起见,大多数文档片段省略了数据库的创建和调度异步运行函数的执行。
如果您想要比文档中更多的现实生活示例,您可以查看测试文件夹,因为它们实际上必须在大多数测试中创建并连接到数据库。
但请记住,这些只是测试,并非所有解决方案都适合在现实生活中使用。
fastapi 生态系统的一部分
作为 fastapi 生态系统的一部分,ormar 在以某种方式与数据库一起工作的选定库中受到支持。
Ormar 仍然与 sql 方言无关 - 因此仅实现在所有受支持的后端中工作的列。
作为 ormar 的扩展,实现特定方言的列相对容易。
Postgres 特定列实现:ormar-postgres-extensions
如果您维护或使用不同的库并希望它支持 ormar,请告诉我们如何提供帮助。
依赖关系
Ormar 的构建有:
- 用于构建查询的 sqlalchemy 核心。
- 用于跨数据库异步支持的数据库。
- pydantic 用于数据验证。
执照
ormar 是作为开源软件构建的,并将保持完全免费(MIT 许可证)。
当我编写开源代码来解决工作中的日常问题或促进和建立强大的 Python 社区时,您可以说谢谢并请我喝杯咖啡或每月资助我,以帮助确保我的工作保持免费和维护。
赞助
从 sqlalchemy 和现有数据库迁移
如果您当前使用 sqlalchemy 并想切换到 ormar,请查看自动翻译工具,它可以帮助您翻译现有的 sqlalchemy orm 模型,这样您就不必手动执行此操作。
Beta 版本可在 github 上找到:sqlalchemy-to-ormar 或简单地 pip install sqlalchemy-to-ormar
sqlalchemy-to-ormar 可以与 sqlacodegen 配合使用,从现有数据库自动映射/生成 ormar 模型,即使您的项目不使用 sqlalchemy。
迁移和数据库创建
因为 ormar 是基于 SQLAlchemy 核心构建的,所以您可以使用 alembic 来提供数据库迁移(对于生产代码,您确实应该这样做)。
对于测试和基本应用程序,sqlalchemy 已经足够了:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | # note this is just a partial snippet full working example below
# 1. Imports
import sqlalchemy
import databases
import ormar
# 2. Initialization
DATABASE_URL = "sqlite:///db.sqlite"
base_ormar_config = ormar.OrmarConfig(
metadata=sqlalchemy.MetaData(),
database=databases.Database(DATABASE_URL),
engine=sqlalchemy.create_engine(DATABASE_URL),
)
# Define models here
# 3. Database creation and tables creation
base_ormar_config.metadata.create_all(engine)
|
有关 alembic 的示例配置以及有关迁移和数据库创建的更多信息,请访问迁移文档部分。
封装版本
ormar 仍在开发中:我们建议固定任何依赖项(即 ormar~=0.9.1)
ormar 还遵循发布编号,即重大更改会增加主要版本号,而其他更改和修复会增加次要版本号,因此对于后者,您应该可以安全地更新,但请务必先阅读发行版文档。 example: (0.5.2 -> 0.6.0 - breaking, 0.5.2 -> 0.5.3 - non breaking)
。
异步Python
请注意,ormar 是一个异步 ORM,这意味着您必须等待对计划在事件循环中执行的方法的调用。 Python 有一个内置模块 asyncio,可以让你做到这一点。
请注意,大多数“普通”Python 解释器不允许在函数外部执行 wait(因为您实际上安排此函数延迟执行,并且不会立即获得结果)。
在现代 Web 框架(如 fastapi)中,框架将为您处理此问题,但如果您打算自己执行此操作,则需要手动执行此操作,如下面的快速入门中所述。
快速入门
请注意,您可以在 github 上的示例文件夹中找到相同的脚本。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408 | from typing import Optional
import databases
import ormar
import sqlalchemy
DATABASE_URL = "sqlite:///db.sqlite"
base_ormar_config = ormar.OrmarConfig(
metadata=sqlalchemy.MetaData(),
database=databases.Database(DATABASE_URL),
engine = sqlalchemy.create_engine(DATABASE_URL),
)
# note that this step is optional -> all ormar cares is a field with name
# ormar_config # and proper parameters, but this way you do not have to repeat
# the same parameters if you use only one database
#
# Note that all type hints are optional
# below is a perfectly valid model declaration
# class Author(ormar.Model):
# ormar_config = base_ormar_config.copy(tablename="authors")
#
# id = ormar.Integer(primary_key=True) # <= notice no field types
# name = ormar.String(max_length=100)
class Author(ormar.Model):
ormar_config = base_ormar_config.copy(tablename="authors")
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
class Book(ormar.Model):
ormar_config = base_ormar_config.copy(tablename="books")
id: int = ormar.Integer(primary_key=True)
author: Optional[Author] = ormar.ForeignKey(Author)
title: str = ormar.String(max_length=100)
year: int = ormar.Integer(nullable=True)
# create the database
# note that in production you should use migrations
# note that this is not required if you connect to existing database
# just to be sure we clear the db before
base_ormar_config.metadata.drop_all(engine)
base_ormar_config.metadata.create_all(engine)
# all functions below are divided into functionality categories
# note how all functions are defined with async - hence can use await AND needs to
# be awaited on their own
async def create():
# Create some records to work with through QuerySet.create method.
# Note that queryset is exposed on each Model's class as objects
tolkien = await Author.objects.create(name="J.R.R. Tolkien")
await Book.objects.create(author=tolkien, title="The Hobbit", year=1937)
await Book.objects.create(author=tolkien, title="The Lord of the Rings", year=1955)
await Book.objects.create(author=tolkien, title="The Silmarillion", year=1977)
# alternative creation of object divided into 2 steps
sapkowski = Author(name="Andrzej Sapkowski")
# do some stuff
await sapkowski.save()
# or save() after initialization
await Book(author=sapkowski, title="The Witcher", year=1990).save()
await Book(author=sapkowski, title="The Tower of Fools", year=2002).save()
# to read more about inserting data into the database
# visit: https://collerek.github.io/ormar/queries/create/
async def read():
# Fetch an instance, without loading a foreign key relationship on it.
# Django style
book = await Book.objects.get(title="The Hobbit")
# or python style
book = await Book.objects.get(Book.title == "The Hobbit")
book2 = await Book.objects.first()
# first() fetch the instance with lower primary key value
assert book == book2
# you can access all fields on loaded model
assert book.title == "The Hobbit"
assert book.year == 1937
# when no condition is passed to get()
# it behaves as last() based on primary key column
book3 = await Book.objects.get()
assert book3.title == "The Tower of Fools"
# When you have a relation, ormar always defines a related model for you
# even when all you loaded is a foreign key value like in this example
assert isinstance(book.author, Author)
# primary key is populated from foreign key stored in books table
assert book.author.pk == 1
# since the related model was not loaded all other fields are None
assert book.author.name is None
# Load the relationship from the database when you already have the related model
# alternatively see joins section below
await book.author.load()
assert book.author.name == "J.R.R. Tolkien"
# get all rows for given model
authors = await Author.objects.all()
assert len(authors) == 2
# to read more about reading data from the database
# visit: https://collerek.github.io/ormar/queries/read/
async def update():
# read existing row from db
tolkien = await Author.objects.get(name="J.R.R. Tolkien")
assert tolkien.name == "J.R.R. Tolkien"
tolkien_id = tolkien.id
# change the selected property
tolkien.name = "John Ronald Reuel Tolkien"
# call update on a model instance
await tolkien.update()
# confirm that object was updated
tolkien = await Author.objects.get(name="John Ronald Reuel Tolkien")
assert tolkien.name == "John Ronald Reuel Tolkien"
assert tolkien.id == tolkien_id
# alternatively update data without loading
await Author.objects.filter(name__contains="Tolkien").update(name="J.R.R. Tolkien")
# to read more about updating data in the database
# visit: https://collerek.github.io/ormar/queries/update/
async def delete():
silmarillion = await Book.objects.get(year=1977)
# call delete() on instance
await silmarillion.delete()
# alternatively delete without loading
await Book.objects.delete(title="The Tower of Fools")
# note that when there is no record ormar raises NoMatch exception
try:
await Book.objects.get(year=1977)
except ormar.NoMatch:
print("No book from 1977!")
# to read more about deleting data from the database
# visit: https://collerek.github.io/ormar/queries/delete/
# note that despite the fact that record no longer exists in database
# the object above is still accessible and you can use it (and i.e. save()) again.
tolkien = silmarillion.author
await Book.objects.create(author=tolkien, title="The Silmarillion", year=1977)
async def joins():
# Tho join two models use select_related
# Django style
book = await Book.objects.select_related("author").get(title="The Hobbit")
# Python style
book = await Book.objects.select_related(Book.author).get(
Book.title == "The Hobbit"
)
# now the author is already prefetched
assert book.author.name == "J.R.R. Tolkien"
# By default you also get a second side of the relation
# constructed as lowercase source model name +'s' (books in this case)
# you can also provide custom name with parameter related_name
# Django style
author = await Author.objects.select_related("books").all(name="J.R.R. Tolkien")
# Python style
author = await Author.objects.select_related(Author.books).all(
Author.name == "J.R.R. Tolkien"
)
assert len(author[0].books) == 3
# for reverse and many to many relations you can also prefetch_related
# that executes a separate query for each of related models
# Django style
author = await Author.objects.prefetch_related("books").get(name="J.R.R. Tolkien")
# Python style
author = await Author.objects.prefetch_related(Author.books).get(
Author.name == "J.R.R. Tolkien"
)
assert len(author.books) == 3
# to read more about relations
# visit: https://collerek.github.io/ormar/relations/
# to read more about joins and subqueries
# visit: https://collerek.github.io/ormar/queries/joins-and-subqueries/
async def filter_and_sort():
# to filter the query you can use filter() or pass key-value pars to
# get(), all() etc.
# to use special methods or access related model fields use double
# underscore like to filter by the name of the author use author__name
# Django style
books = await Book.objects.all(author__name="J.R.R. Tolkien")
# python style
books = await Book.objects.all(Book.author.name == "J.R.R. Tolkien")
assert len(books) == 3
# filter can accept special methods also separated with double underscore
# to issue sql query ` where authors.name like "%tolkien%"` that is not
# case sensitive (hence small t in Tolkien)
# Django style
books = await Book.objects.filter(author__name__icontains="tolkien").all()
# python style
books = await Book.objects.filter(Book.author.name.icontains("tolkien")).all()
assert len(books) == 3
# to sort use order_by() function of queryset
# to sort decreasing use hyphen before the field name
# same as with filter you can use double underscores to access related fields
# Django style
books = (
await Book.objects.filter(author__name__icontains="tolkien")
.order_by("-year")
.all()
)
# python style
books = (
await Book.objects.filter(Book.author.name.icontains("tolkien"))
.order_by(Book.year.desc())
.all()
)
assert len(books) == 3
assert books[0].title == "The Silmarillion"
assert books[2].title == "The Hobbit"
# to read more about filtering and ordering
# visit: https://collerek.github.io/ormar/queries/filter-and-sort/
async def subset_of_columns():
# to exclude some columns from loading when querying the database
# you can use fileds() method
hobbit = await Book.objects.fields(["title"]).get(title="The Hobbit")
# note that fields not included in fields are empty (set to None)
assert hobbit.year is None
assert hobbit.author is None
# selected field is there
assert hobbit.title == "The Hobbit"
# alternatively you can provide columns you want to exclude
hobbit = await Book.objects.exclude_fields(["year"]).get(title="The Hobbit")
# year is still not set
assert hobbit.year is None
# but author is back
assert hobbit.author is not None
# also you cannot exclude primary key column - it's always there
# even if you EXPLICITLY exclude it it will be there
# note that each model have a shortcut for primary_key column which is pk
# and you can filter/access/set the values by this alias like below
assert hobbit.pk is not None
# note that you cannot exclude fields that are not nullable
# (required) in model definition
try:
await Book.objects.exclude_fields(["title"]).get(title="The Hobbit")
except pydantic.ValidationError:
print("Cannot exclude non nullable field title")
# to read more about selecting subset of columns
# visit: https://collerek.github.io/ormar/queries/select-columns/
async def pagination():
# to limit number of returned rows use limit()
books = await Book.objects.limit(1).all()
assert len(books) == 1
assert books[0].title == "The Hobbit"
# to offset number of returned rows use offset()
books = await Book.objects.limit(1).offset(1).all()
assert len(books) == 1
assert books[0].title == "The Lord of the Rings"
# alternatively use paginate that combines both
books = await Book.objects.paginate(page=2, page_size=2).all()
assert len(books) == 2
# note that we removed one book of Sapkowski in delete()
# and recreated The Silmarillion - by default when no order_by is set
# ordering sorts by primary_key column
assert books[0].title == "The Witcher"
assert books[1].title == "The Silmarillion"
# to read more about pagination and number of rows
# visit: https://collerek.github.io/ormar/queries/pagination-and-rows-number/
async def aggregations():
# count:
assert 2 == await Author.objects.count()
# exists
assert await Book.objects.filter(title="The Hobbit").exists()
# maximum
assert 1990 == await Book.objects.max(columns=["year"])
# minimum
assert 1937 == await Book.objects.min(columns=["year"])
# average
assert 1964.75 == await Book.objects.avg(columns=["year"])
# sum
assert 7859 == await Book.objects.sum(columns=["year"])
# to read more about aggregated functions
# visit: https://collerek.github.io/ormar/queries/aggregations/
async def raw_data():
# extract raw data in a form of dicts or tuples
# note that this skips the validation(!) as models are
# not created from parsed data
# get list of objects as dicts
assert await Book.objects.values() == [
{"id": 1, "author": 1, "title": "The Hobbit", "year": 1937},
{"id": 2, "author": 1, "title": "The Lord of the Rings", "year": 1955},
{"id": 4, "author": 2, "title": "The Witcher", "year": 1990},
{"id": 5, "author": 1, "title": "The Silmarillion", "year": 1977},
]
# get list of objects as tuples
assert await Book.objects.values_list() == [
(1, 1, "The Hobbit", 1937),
(2, 1, "The Lord of the Rings", 1955),
(4, 2, "The Witcher", 1990),
(5, 1, "The Silmarillion", 1977),
]
# filter data - note how you always get a list
assert await Book.objects.filter(title="The Hobbit").values() == [
{"id": 1, "author": 1, "title": "The Hobbit", "year": 1937}
]
# select only wanted fields
assert await Book.objects.filter(title="The Hobbit").values(["id", "title"]) == [
{"id": 1, "title": "The Hobbit"}
]
# if you select only one column you could flatten it with values_list
assert await Book.objects.values_list("title", flatten=True) == [
"The Hobbit",
"The Lord of the Rings",
"The Witcher",
"The Silmarillion",
]
# to read more about extracting raw values
# visit: https://collerek.github.io/ormar/queries/aggregations/
async def with_connect(function):
# note that for any other backend than sqlite you actually need to
# connect to the database to perform db operations
async with database:
await function()
# note that if you use framework like `fastapi` you shouldn't connect
# in your endpoints but have a global connection pool
# check https://collerek.github.io/ormar/fastapi/ and section with db connection
# gather and execute all functions
# note - normally import should be at the beginning of the file
import asyncio
# note that normally you use gather() function to run several functions
# concurrently but we actually modify the data and we rely on the order of functions
for func in [
create,
read,
update,
delete,
joins,
filter_and_sort,
subset_of_columns,
pagination,
aggregations,
raw_data,
]:
print(f"Executing: {func.__name__}")
asyncio.run(with_connect(func))
# drop the database tables
metadata.drop_all(engine)
|
奥马尔规格
查询集方法
- 创建(**kwargs):-> 模型
get(*args, **kwargs): -> Model
get_or_none(*args, **kwargs): -> Optional[Model]
get_or_create(_defaults: Optional[Dict[str, Any]] = None, *args, **kwargs) -> Tuple[Model, bool]
first(*args, **kwargs): -> Model
update(each: bool = False, **kwargs) -> int
update_or_create(**kwargs) -> Model
bulk_create(objects: List[Model]) -> None
bulk_update(objects: List[Model], columns: List[str] = None) -> None
delete(*args, each: bool = False, **kwargs) -> int
all(*args, **kwargs) -> List[Optional[Model]]
iterate(*args, **kwargs) -> AsyncGenerator[Model]
filter(*args, **kwargs) -> QuerySet
exclude(*args, **kwargs) -> QuerySet
select_related(related: Union[List, str]) -> QuerySet
prefetch_related(related: Union[List, str]) -> QuerySet
limit(limit_count: int) -> QuerySet
offset(offset: int) -> QuerySet
count(distinct: bool = True) -> int
- 存在() -> 布尔值
max(columns: List[str]) -> Any
min(columns: List[str]) -> Any
avg(columns: List[str]) -> Any
sum(columns: List[str]) -> Any
fields(columns: Union[List, str, set, dict]) -> QuerySet
exclude_fields(columns: Union[List, str, set, dict]) -> QuerySet
order_by(columns:Union[List, str]) -> QuerySet
values(fields: Union[List, str, Set, Dict])
values_list(fields: Union[List, str, Set, Dict])
关系类型
- 一对多 - 使用ForeignKey(to: Model)
- 多对多 - 与
ManyToMany(to: Model, Optional[through]: Model)
模型字段类型
可用模型字段(具有必需的参数 - 文档中的可选参数):
- 字符串(最大长度)
- 文本()
- 布尔值()
- 整数()
- 漂浮()
- 日期()
- 时间()
- 日期时间()
JSON()
- 大整数()
- 小整数()
- 小数(小数位数、精度)
UUID()
- 大二进制(最大长度)
- 枚举(枚举类)
- 类似于 Field 的枚举 - 通过将选择传递给任何其他 Field 类型
- EncryptedString - 通过传递 encrypt_secret 和 encrypt_backend
- 外键(至)
- 多对多(到)
可用字段选项
所有字段类型都支持以下关键字参数。
- 主键:布尔值
- 可空:布尔值
- 默认值:任何
- 服务器默认值:任何
- 索引:布尔值
- 唯一:布尔
- 名称:str
除非设置了以下其中一项,否则所有字段均为必填:
- nullable - 创建一个可为空的列。将默认值设置为 False。详细信息请阅读字段通用参数。
- sql_nullable - 用于为 pydantic 和数据库设置不同的设置。将默认值设置为可为空的值。详细信息请阅读字段通用参数。
- 默认 - 设置字段的默认值。不适用于关系字段
- server_default - 设置服务器端字段的默认值(如 sqlalchemy 的 func.now())。不适用于关系字段
- 带自动增量的主键 - 当某列设置为主键并在此列上设置自动增量时。默认情况下,int 主键设置自动增量。
可用信号
信号允许针对给定模型上的给定事件触发您的函数。
- 预保存
- 保存后
- 预更新
- 更新后
- 预删除
- 删除后
- 预关系添加
- 后关系添加
- 预关系删除
- 删除关系后